Dynamics of Inorganic Nutrients in Intertidal Sediments: Porewater, Exchangeable, and Intracellular Pools
نویسندگان
چکیده
The study of inorganic nutrients dynamics in shallow sediments usually focuses on two main pools: porewater (PW) nutrients and exchangeable (EX) ammonium and phosphate. Recently, it has been found that microphytobenthos (MPB) and other microorganisms can accumulate large amounts of nutrients intracellularly (IC), highlighting the biogeochemical importance of this nutrient pool. Storing nutrients could support the growth of autotrophs when nutrients are not available, and could also provide alternative electron acceptors for dissimilatory processes such as nitrate reduction. Here, we studied the magnitude and relative importance of these three nutrient pools (PW, IC, and EX) and their relation to chlorophylls (used as a proxy for MPB abundance) and organic matter (OM) contents in an intertidal mudflat of Cadiz Bay (Spain). MPB was localized in the first 4 mm of the sediment and showed a clear seasonal pattern; highest chlorophylls content was found during autumn and lowest during spring-summer. The temporal and spatial distribution of nutrients pools and MPB were largely correlated. Ammonium was higher in the IC and EX fractions, representing on average 59 and 37% of the total ammonium pool, respectively. Similarly, phosphate in the IC and EX fractions accounted on average for 40 and 31% of the total phosphate pool, respectively. Nitrate in the PW was low, suggesting low nitrification activity and rapid consumption. Nitrate accumulated in the IC pool during periods of moderate MPB abundance, being up to 66% of the total nitrate pool, whereas it decreased when chlorophyll concentration peaked likely due to a high nitrogen demand. EX-Nitrate accounted for the largest fraction of total sediment nitrate, 66% on average. The distribution of EX-Nitrate was significantly correlated with chlorophyll and OM, which probably indicates a relation of this pool to an increased availability of sites for ionic adsorption. This EX-Nitrate pool could represent an alternative nitrate source with significant concentrations available to the microbial community, deeper in the sediment below the oxic layer.
منابع مشابه
Using porewater profiles to assess nutrient availability in seagrass-vegetated carbonate sediments
We measured porewater profiles of inorganic (NH4 , NO − 3 (+NO − 2 ), PO 3− 4 (hereafter referred to as DIP)) and organic (DON, DOP) nutrients in seagrass-vegetated sediments at two sites in a shallow bay in Bermuda within close proximity (200 m) but subject to different nutrient loading. At both sites, total dissolved and inorganic nutrient concentrations were usually 1–2 orders of magnitude h...
متن کاملProduction and consumption of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) in a diatom-dominated intertidal sediment
Intertidal sediments usually contain a high amount of dimethylsulfoniopropionate (DMSP) and therefore represent environments with a potentially high emission of dimethylsulfide (DMS). However, knowledge on production and release of DMSP in intertidal sediments is limited. Here, we present data on the diel variation of the total DMS and DMSP content (DMS[P]total) and the DMS(P) concentration in ...
متن کاملSolid-phase Phosphorus Pools in Highly Organic Carbonate Sediments of North-eastern Florida Bay
Currently, few studies have investigated sediment phosphorus (P) pools or identified the chemical processes important in the P cycle of fine-grained carbonate sediments, particularly in coastal estuaries with high organic matter. To determine the role of fine-grain calcium carbonate and high organic matter on sedimentary P, we investigated the solid-phase P pools in seagrass sediments of north-...
متن کاملVirus Dynamics Are Influenced by Season, Tides and Advective Transport in Intertidal, Permeable Sediments
Sandy surface sediments of tidal flats exhibit high microbial activity due to the fast and deep-reaching transport of oxygen and nutrients by porewater advection. On the other hand during low tide, limited transport results in nutrient and oxygen depletion concomitant to the accumulation of microbial metabolites. This study represents the first attempt to use flow-through reactors to investigat...
متن کاملThe Fate of Nitrate in Intertidal Permeable Sediments
Coastal zones act as a sink for riverine and atmospheric nitrogen inputs and thereby buffer the open ocean from the effects of anthropogenic activity. Recently, microbial activity in sandy permeable sediments has been identified as a dominant source of N-loss in coastal zones, namely through denitrification. Some of the highest coastal denitrification rates measured so far occur within the inte...
متن کامل